嘿大头(Hidato)比数独(Sudoku)更丰富多彩

贝内德克博士 (Gyora Benede k)

简介

数独谜题是当今最流行的逻辑谜题之一。嘿大头谜题的发明时间远远晚于数独,并在2008年出现在公众视野,从那时起,它的受欢迎程度不断增加。在下文,我们将展示,与同样大小的数独网格相比,9×9的嘿大头网格更多。

首先让我们描述两个谜题。数独游戏中最流行的形式由9×9网格组成,分成9个3×3的块区。

一些框用数字1-9填充,并且解题者必须通过在每个格中填充数字1-9来完成网格,使得每行、每列和每个3×3的框包含每个数字1-9正好一次。图1显示了一个示例数独谜题。

		6	4		7			8
		1		5				9
		4		9				7
9						4	5	
			6	8	2			3
				4		1		2
2	4					9		
7		3		1				
		9	8	2	3			

图1 一个数独谜题示例1

嘿大头有很多变种,并且对板的尺寸和形状没有限制。在本文中,我们将仅讨论9×9矩形网格上的经典嘿大头,其大小和形状与数独网格相同。

_

¹ 见附录A中的解答。

经典嘿大头谜题的想法非常简单。解题者面对的是部分填充地从1到格数数量的网格,在我们的例子中格数数量为81。其目标是通过填充缺失的数字来完成网格,使得每两个连续的数字实现水平地、垂直地或对角地连接。

² 见附录A中的解答。

每个数字必须正好出现一次。图2显示了一个嘿大头谜题示例。

43			46			50	52	
	41	40	39	38				
		33			36			
30	29		27		58	57	60	
			20	22	25			62
	14		18					64
	9		17	81		75	65	72
	8	3			77		68	
1			5		78			70

图2 一个经典嘿大头谜题示例2

在本文中,我们将考虑枚举所有可能的9×9经典嘿大头网格 - 这些都是相同类型的所有可能的嘿大头谜题的解决方案。他们也被称为国王游览(King tours),参照国际象棋中国王棋子的走棋。这样的嘿大头网格还在由9×9网格限定的图上在水平、垂直和对角边缘构成哈密尔顿路径(Hamiltonian path)。这是一个很自然的问题,但似乎不太可能有一个简单的组合式的解决方案。我们将只能显示下边界和上边界。我们将展示的下边界是费尔根豪尔(Felgenhauer)等计算的数独网格数量的500多倍。 [1]。在另一个注释[2]中,我们通过 $n \times m$ 嘿大头网格显示一般边界。

还有其他嘿大头变体,其中数字必须通过其他规则连接。在本文中,我们只考虑经典嘿大头,有时会省略"经典"这个词,但不影响意思的表达。

找出9×9经典嘿大头网格数量的下边界

为了找到下边界,我们将枚举所有网格的一个小子集。在图3中,我们将9×9网格分成四个子网格,并用字母标记网格上的一些框。

-

² 见附录A中的解答。

		A	С		
		В	D		
				Е	F
				G	Н
		K	Ι		
		L	J		

图3. 将9×9网格划分为4个子网格。

我们将枚举所有9×9网格, 其中

- a) 数字1到24在左上角5×5子网格中,
- b) 25在框A或B中,
- c) 26在框C或D中,
- d)数字27到44位于右上角的4×5子网格中,
- e) 45位于框E或F中,
- f) 46在框G或H中,
- g)数字47到60在右下4×4子网格中,
- h) 61在框I或I中,
- i)62在框K或者L中,
- i) 63至81位于左下5×4子网格中。

此外,每个子网格内的数字遵循经典嘿大头网规则(即连续数字在水平、垂直或对角连接)。很显然,所有这些网格都是有效的9×9嘿大头网格。

让我们用A来表示他们的数量。附录B显示了几个这样的网格。

参照图3,让我们用H和H表示5×5嘿大头网格的数量,其中数字25分别在框A和B。让我们用H_E表示4×5嘿大头网格的数量,其中1在C框内,20在F框内。相似地我们用H_E、H_E和H_E表示4×5嘿大头网格的数量,其中1在C框或D框内,20在E框或F框内。我们用H_E、H_E和H_E表示以H_E和

另外,我们用HK和HL表示4×5嘿大头网格的数量,其中1在K框或L框内。结合上面图3的所有网格,并进行必要的重新编号,我们可以创建H1个9×9网格,并且我们得到

$$H_1 \cdot (H_A \cdot H_B) \cdot (H_{CF} \cdot H_{CE} \cdot H_{DF} \cdot H_{DF}) \cdot (H_{GI} \cdot H_{GI} \cdot H_{HI} \cdot H_{HI}) \cdot (H_K \cdot H_L)$$

为了计算这些值,我们借助了计算机程序。产生了下面的结果:

$$H_A$$
 • 5941190 H_B • 2436960 , H_{CF} •10301 H_{CE} • 42082 , 8 . 4

$$H_{DF}$$
 · 40792 H_{DE} · 16481 H_{GI} · 81 H_{GJ} · H_{HI} · 2054 H_{HJ} · 4942 , 8 ,

 H_{κ} · 405314 和 H_{L} · 901111。替换上这些值,我们可以得到

 $H_1 \cdot 2185830758 \ 2965684642 \ 7200.$

我们注意到每个这样的网格可以旋转和/或翻转,因此可以得出8个不同的网格。此外,我们可以对网格重新编号,使得1被81代替,2被80代替,依此类推。所以我们一共有16×H 这么多不同的网格。

最后,所有9×9嘿大头网格的下边界是:

 $L_{9.9} \cdot 16H_1 \cdot 3497329213 \ 2745095428 \ 35200 \cdot 3.49^{24}10_{\bullet 1.4} \cdot 2^{81}$

找出9×9经典嘿大头网格数量的上边界

为了计算经典9×9嘿大头网格的数量上边界,我们在每个框中标注了连接框的数量,如图5。

3	5	5	5	5	5	5	5	3
5	8	8	8	8	8	8	8	5
5	8	8	8	8	8	8	8	5
5	8	8	8	8	8	8	8	5
5	8	8	8	8	8	8	8	5
5	8	8	8	8	8	8	8	5
5	8	8	8	8	8	8	8	5
5	8	8	8	8	8	8	8	5
3	5	5	5	5	5	5	5	3

图5连接框的数量。

还要注意,1可以放置在81个框中的任何一个,并且2必须连接到它。很显然,可以放置数字1和2的数量是

$$U_{12} \cdot 4 \cdot 3 \cdot 28 \cdot 5 \cdot 49 \cdot 8 \cdot 54$$

我们注意到2和81之间的所有数字j至少有一个连接框由j-1占据。接下来注意,最后的数字81、80、79、78最多分别具有1、2、3和4种可能性,总计最多有4!种可能性。为了计算上边界,我们假设81在一个角落,80-78在边缘。类似地,我们假设1在角落,2在边缘上。所以我们假设两个角落被1和81占据;

四个边框由2、80、79和78占据。所以可以得出以下上边界:

 $U_{9.9} \cdot 544 \cdot 4! \cdot 7^{49} \cdot 4^{24} \cdot 2^2 \cdot$

3776712148 9480518908 7294201250 7938662905 4988533046 8572548300 8 $U_{q,q}$ 小于 3. 8·1[®] 并且小于2[™]。

讨论

下边界和上边界之间的巨大差距需要进一步研究。产生上述结果的计算,如果使用常规家用电脑,需要花几天时间。虽然它们可以被优化、并行化和分布,但我们怀疑在不久的将来是否能够通过蛮力枚举出所有的9×9网格。或许目前枚举出所有的6×6网格是比较实际的,可能会带来更好的下边界,这是一项有趣的挑战。

有趣的是,我们有81个框,下边界稍大于281。在另一项研究[2]中,我们发现 $n \times n$ 嘿大 头网格的实际数量是 $O(a^{n:n})$ 其中2.1 · a · 2.4。

在[1]费尔根豪尔等的计算中表明数独网格的数量是

6670903752 0210729369 60 · 6.671 · 10²¹ 大约比_{· 9} · 3.49 · 10²⁴小了524倍。可以合理地得出结论,9×9嘿大头网格的数量比数独网格的数量大出几个数量级。

网格和谜题

显而易见,从每个网格,我们可以通过隐藏一些数字在网格中创建许多不同的谜题。相同的原始网格将解决所有这些谜题。这同时适用于嘿大头和数独。如何计算从一个网格可以导出的谜题数量还是一个悬而未决的问题。然而考虑到网格的数量巨大,我们有理由期待所有的谜题都有不同的解答方法。在这个意义上,我们可以说,与同样大小的数独谜题相比,会有更多9×9的经典嘿大头谜题。

附录A: 谜题的解答

5	9	6	4	3	7	2	1	8
8	7	1	2	5	6	3	4	9
3	2	4	1	9	8	5	6	7
9	8	2	3	7	1	4	5	6
4	1	5	6	8	2	7	9	3
6	3	7	5	4	9	1	8	2
2	4	8	7	6	5	9	3	1
7	6	3	9	1	4	8	2	5
1	5	9	8	2	3	6	7	4

图6. 图1的数独谜题解答

43	44	45	46	47	48	50	52	53
42	41	40	39	38	37	49	51	54
31	32	33	34	35	36	59	56	55
30	29	28	27	26	58	57	60	61
13	15	19	20	22	25	24	63	62
12	14	16	18	21	23	74	73	64
11	9	7	17	81	76	75	65	72
10	8	3	6	80	77	66	68	71
1	2	4	5	79	78	67	69	70

图7. 图2的嘿大头谜题解答

附录B: H的嘿大头网格示例

5	6	15	16	25	26	27	28	29
4	7	14	17	24	33	32	31	30
3	8	13	18	23	34	35	36	37
2	9	12	19	22	41	40	39	38
1	10	11	20	21	42	43	44	45
69	68	67	66	65	49	48	47	46
70	79	78	77	64	50	51	52	53
71	80	81	76	63	60	58	57	54
72	73	74	75	62	61	59	56	55

图8. 根据图3得出的一个网格 其中 A=25, C=26, F=45, H=46, J=61, L=62

5	6	15	16	25	27	28	29	30
4	7	14	17	24	26	33	32	31
3	8	13	18	23	34	35	36	37
2	9	12	19	22	41	40	39	38
1	10	11	20	21	42	43	44	45
69	68	67	66	65	51	50	46	47
70	79	78	77	64	52	53	49	48
71	80	81	76	63	60	58	54	55
72	73	74	75	62	61	59	57	56

图9. 根据图3得出的另一个网格 其中 A=25, D=26, F=45, G=46, J=61, L=62

参考资料

- [1] Bertram Felgenhauer, Frazer Jarvis, Enumerating possible Sudoku grid s, , June 20,
- 2005. http://www.afjarvis.staff.shef.ac.uk/sudoku/felgenhauer_jarvis_spec1.pdf
- [2] Gyora Benedek, Enumerating Classic Hidato grids, in preparation.